If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x)^2+(16x)^2=31
We move all terms to the left:
(9x)^2+(16x)^2-(31)=0
We add all the numbers together, and all the variables
25x^2-31=0
a = 25; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·25·(-31)
Δ = 3100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3100}=\sqrt{100*31}=\sqrt{100}*\sqrt{31}=10\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{31}}{2*25}=\frac{0-10\sqrt{31}}{50} =-\frac{10\sqrt{31}}{50} =-\frac{\sqrt{31}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{31}}{2*25}=\frac{0+10\sqrt{31}}{50} =\frac{10\sqrt{31}}{50} =\frac{\sqrt{31}}{5} $
| -5.1-d=6.5 | | -14=r-11 | | 8y+2=-22 | | 5c-8-3c-4=0 | | (3x-1)^2+(4x+1)^2=(5x-1)*(5x+1)+1 | | (9x)^2+(16x)^2=55 | | 3/5x+4=32 | | (2+3x)29=360 | | 62(2+3x)=360 | | (9x)^2+(16x)^2=55^2 | | 12x-13=5(2x-2)+2x-3 | | 7a^2=10a+8 | | X+3x+(3x+10)=430 | | 2(6-y)/5=-y | | X^2-18x-45=-5 | | 6-3(2a-4)=-18 | | 5/7=x/8 | | A^2+20a-93=2 | | -7(2x-9)+7=-14x+70 | | 250-h=113 | | A^2+12a-90=8 | | 3x=16+25 | | 5(4^x)=45 | | 10-t=4 | | 11n+56=100 | | -8x-14=(-2-4x)+4x | | y=-0.2+6.1 | | 33=31-b | | 25s=35 | | 40+12x-16x2=0 | | 5.4+14.6-10.1t=12.8-3.5t | | -30+x=18 |